Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
نویسندگان
چکیده
Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG.
منابع مشابه
Limitations of ex vivo measurements for in vivo neuroscience.
A long history of postmortem studies has provided significant insight into human brain structure and organization. Cadavers have also proven instrumental for the measurement of artifacts and nonneural effects in functional imaging, and more recently, the study of biophysical properties critical to brain stimulation. However, death produces significant changes in the biophysical properties of br...
متن کاملMeasurements and models of electric fields in the in vivo human brain during transcranial electric stimulation
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulat...
متن کاملMini-coil for magnetic stimulation in the behaving primate.
Transcranial magnetic stimulation (TMS) is rapidly becoming a leading method in both cognitive neuroscience and clinical neurology. However, the cellular and network level effects of stimulation are still unclear and their study relies heavily on indirect physiological measurements in humans. Direct electrophysiological studies of the effect of magnetic stimulation on neuronal activity in behav...
متن کاملEndogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation
Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to...
متن کاملCerebral Cortex Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity
Noninvasive brain stimulation techniques have been successfully used to modulate brain activity, have become a highly useful tool in basic and clinical research and, recently, have attracted increased attention due to their putative use as a method for neuro-enhancement. In this scenario, transcranial static magnetic stimulation (SMS) of moderate strength might represent an affordable, simple, ...
متن کامل